Play John Conway’s Game of Life

..O.........OO........O..........OO. O.O........OO.......O.O..........O.O .OO..........O.......OO..........O.. ....OO..OO...............OO..OO..... .O...O..OO............O...O..OO..... .OOOO.............OO..OOOO.......... ..................O................. .OO................OOOOO............ .OO.....................O........... .....................OOO............ .....................O..............

Life Lexicon

(CC BY-SA 3.0)

This Life lexicon is compiled by Stephen A. Silver from various sources and may be copied, modified and distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported licence. See the original credit page for all credits and the original download location. The styling has been adjusted to fit this website.

Sparking eater

:sparking eater One of two eaters found in April 1997 and November 1998 by Dean Hickerson using his dr search program, shown below to the left and right respectively. These both absorb gliders as a standard eater does, but also produce separated single-bit sparks at the upper right, which can be used to delete antiparallel gliders with different phases as shown.

Game of Life pattern ’sparking_eater’

The above mechanisms can be used to build intermitting glider guns. The left-hand eater produces a spark nine ticks after a glider impact, with the result that the period of the constituent guns can't be a multiple of 4. The right-hand eater produces the same spark ten ticks after impact, which allows p4N guns to be used.

The separation of the spark also allows this reaction to perform other perturbations "around the corner" of some objects. For example, it was used by Jason Summers in 2004 to cap the ends of a row of ten AK47 reactions to form a much smaller period 94 glider gun than the original one. (This is now made obsolete by the AK94 gun.)

John Conway’s Game of Life

The Game of Life is not your typical computer game. It is a cellular automaton, and was invented by Cambridge mathematician John Conway.

This game became widely known when it was mentioned in an article published by Scientific American in 1970. It consists of a collection of cells which, based on a few mathematical rules, can live, die or multiply. Depending on the initial conditions, the cells form various patterns throughout the course of the game.

Rules

For a space that is populated:

Each cell with one or no neighbors dies, as if by solitude.

Each cell with four or more neighbors dies, as if by overpopulation.

Each cell with two or three neighbors survives.

For a space that is empty or unpopulated

Each cell with three neighbors becomes populated.

The Controls

Choose a pattern from the lexicon or make one yourself by clicking on the cells. The 'Start' button advances the game by several generations (each new generation corresponding to one iteration of the rules).

More information

In the first video, from Stephen Hawkings’ documentary The Meaning of Life, the rules are explained, in the second, John Conway himself talks about the Game of Life.

Stephen Hawkings The Meaning of Life (John Conway's Game of Life segment) Inventing Game of Life (John Conway) - Numberphile

The Guardian published a nice article about John Conway.


If you’ve been thinking “I’d like to sell my Tesla,” check out FindMyElectric.com—the ultimate Tesla marketplace, and one of Game of Life’s supporters!

The Game of Life is also supported by Dotcom-Tools, Load View Testing, Driven Coffee Roasters, and Web Hosting Buddy.

Implemented by Edwin Martin <>