Play John Conway’s Game of Life

...O........................................................... .O...O......................................................... .O....O....OO.OO............................................... O......O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO. O......O..O......O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O OO.....O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO. ......O....OO.OO............................................... ....O..........................................................

Life Lexicon

(CC BY-SA 3.0)

This Life lexicon is compiled by Stephen A. Silver from various sources and may be copied, modified and distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported licence. See the original credit page for all credits and the original download location. The styling has been adjusted to fit this website.

Lightspeed wire

:lightspeed wire Any wick that can burn non-destructively at the speed of light. Lightspeed wires are a type of reburnable fuse. These are potentially useful for various things, but so far the necessary mechanisms are very large and unwieldy. In October 2002, Jason Summers discovered a lightspeed reaction travelling through an orthogonal chain of beehives. Summers completed a period-1440 lightspeed telegraph based on this reaction in 2003.

Game of Life pattern ’lightspeed_wire_(1)’

A stable lightspeed transceiver mechanism using this same signal reaction, the p1 telegraph, was constructed by Adam P. Goucher in 2010; the bounding boxes of both the transmitter and receiver are over 5000 cells on a side. A more compact periodic high-bandwidth telegraph with a much improved transmission rate was completed by Louis-François Handfield in 2017.

The following diagram shows an older example of a lightspeed wire, with a small defect that travels along it at the speed of light. As of June 2018, no method has been found of creating such a defect in the upstream end of this particular stable wire, or of non-destructively detecting the arrival of the defect and repairing the wire at the downstream end.

John Conway’s Game of Life

The Game of Life is not your typical computer game. It is a cellular automaton, and was invented by Cambridge mathematician John Conway.

This game became widely known when it was mentioned in an article published by Scientific American in 1970. It consists of a collection of cells which, based on a few mathematical rules, can live, die or multiply. Depending on the initial conditions, the cells form various patterns throughout the course of the game.

Rules

For a space that is populated:

Each cell with one or no neighbors dies, as if by solitude.

Each cell with four or more neighbors dies, as if by overpopulation.

Each cell with two or three neighbors survives.

For a space that is empty or unpopulated

Each cell with three neighbors becomes populated.

The Controls

Choose a pattern from the lexicon or make one yourself by clicking on the cells. The 'Start' button advances the game by several generations (each new generation corresponding to one iteration of the rules).

More information

In the first video, from Stephen Hawkings’ documentary The Meaning of Life, the rules are explained, in the second, John Conway himself talks about the Game of Life.

Stephen Hawkings The Meaning of Life (John Conway's Game of Life segment) Inventing Game of Life (John Conway) - Numberphile

The Guardian published a nice article about John Conway.


If you’ve been thinking “I’d like to sell my Tesla,” check out FindMyElectric.com—the ultimate Tesla marketplace, and one of Game of Life’s supporters!

The Game of Life is also supported by Dotcom-Tools, Load View Testing, Driven Coffee Roasters, and Web Hosting Buddy.

Implemented by Edwin Martin <>