Play John Conway’s Game of Life

..O.O.................. ...OO.................. ...O.................O. ....................O.. ....................OOO ....................... ....................... ..........O............ ...........OO.......... ..........OO........... ....................... .OO.................... O.O..OO................ ..O.OO................. ......O................ ....................... ....................... ....................... .....OO................ ......OO............... .....O.................

Life Lexicon

(CC BY-SA 3.0)

This Life lexicon is compiled by Stephen A. Silver from various sources and may be copied, modified and distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported licence. See the original credit page for all credits and the original download location. The styling has been adjusted to fit this website.

Inject

:inject A reaction in which a hole in a regular spaceship stream is filled partially or fully by adding a new spaceship of the same type without affecting the existing spaceships in the stream. Depending on the period of the stream, different mechanisms can be used. For adding a spaceship to an existing multi-lane convoy, see inserter.

For large period glider streams, simple reactions such as LWSS-LWSS bounce and LWSS-glider bounce suffice. If Herschel technology is used, a large number of edge shooters and transparent conduits are known. Simple examples include the NW31 Herschel-to-glider converter and the Fx119 inserter.

Shown below is an injector found by Dave Buckingham that can fill a hole in a p15 glider stream:

Game of Life pattern ’inject’

For very low-period glider streams, a GIG is a much more efficient insertion method, in the sense that fewer synchronized signals are needed. However, it has been shown that colliding gliders can complete an insertion even into a single-glider gap in a period-14 stream.

John Conway’s Game of Life

The Game of Life is not your typical computer game. It is a cellular automaton, and was invented by Cambridge mathematician John Conway.

This game became widely known when it was mentioned in an article published by Scientific American in 1970. It consists of a collection of cells which, based on a few mathematical rules, can live, die or multiply. Depending on the initial conditions, the cells form various patterns throughout the course of the game.

Rules

For a space that is populated:

Each cell with one or no neighbors dies, as if by solitude.

Each cell with four or more neighbors dies, as if by overpopulation.

Each cell with two or three neighbors survives.

For a space that is empty or unpopulated

Each cell with three neighbors becomes populated.

The Controls

Choose a pattern from the lexicon or make one yourself by clicking on the cells. The 'Start' button advances the game by several generations (each new generation corresponding to one iteration of the rules).

More information

In the first video, from Stephen Hawkings’ documentary The Meaning of Life, the rules are explained, in the second, John Conway himself talks about the Game of Life.

Stephen Hawkings The Meaning of Life (John Conway's Game of Life segment) Inventing Game of Life (John Conway) - Numberphile

The Guardian published a nice article about John Conway.


If you’ve been thinking “I’d like to sell my Tesla,” check out FindMyElectric.com—the ultimate Tesla marketplace, and one of Game of Life’s supporters!

The Game of Life is also supported by Dotcom-Tools, Load View Testing, Driven Coffee Roasters, and Web Hosting Buddy.

Implemented by Edwin Martin <>