Play John Conway’s Game of Life

......O... ......O.O. ......OO.. .......... OOO....... ..O....... .O.....OO. ........OO .......O..

Life Lexicon

(CC BY-SA 3.0)

This Life lexicon is compiled by Stephen A. Silver from various sources and may be copied, modified and distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported licence. See the original credit page for all credits and the original download location. The styling has been adjusted to fit this website.

Glider synthesis

:glider synthesis Construction of an object by means of glider collisions. It is generally assumed that the gliders should be arranged so that they could come from infinity. That is, gliders should not have had to pass through one another to achieve the initial arrangement.

Glider syntheses for all still lifes and known oscillators with at most 14 cells were found by Dave Buckingham. As of June 2018, this limit has been increased to 18 cells.

Perhaps the most interesting glider syntheses are those of spaceships, because these can be used to create corresponding guns and rakes. Many of the c/2 spaceships that are based on standard spaceships have been synthesized, mostly by Mark Niemiec. In June 1998 Stephen Silver found syntheses for some of the Corderships (although it was not until July 1999 that Jason Summers used this to build a Cordership gun). In May 2000, Noam Elkies suggested that a 2c/5 spaceship found by Tim Coe in May 1996 might be a candidate for glider synthesis. Initial attempts to construct a synthesis for this spaceship got fairly close, but it was only in March 2003 that Summers and Elkies managed to find a way to perform the crucial last step. Summers then used the new synthesis to build a c/2 forward rake for the 2c/5 spaceship; this was the first example in Life of a rake which fires spaceships that travel in the same direction as the rake but more slowly.

A 3-glider synthesis of a pentadecathlon is shown in the diagram below. This was found in April 1997 by Heinrich Koenig and came as a surprise, as it was widely assumed that anything using just three gliders would already be known.

Game of Life pattern ’glider_synthesis’

John Conway’s Game of Life

The Game of Life is not your typical computer game. It is a cellular automaton, and was invented by Cambridge mathematician John Conway.

This game became widely known when it was mentioned in an article published by Scientific American in 1970. It consists of a collection of cells which, based on a few mathematical rules, can live, die or multiply. Depending on the initial conditions, the cells form various patterns throughout the course of the game.

Rules

For a space that is populated:

Each cell with one or no neighbors dies, as if by solitude.

Each cell with four or more neighbors dies, as if by overpopulation.

Each cell with two or three neighbors survives.

For a space that is empty or unpopulated

Each cell with three neighbors becomes populated.

The Controls

Choose a pattern from the lexicon or make one yourself by clicking on the cells. The 'Start' button advances the game by several generations (each new generation corresponding to one iteration of the rules).

More information

In the first video, from Stephen Hawkings’ documentary The Meaning of Life, the rules are explained, in the second, John Conway himself talks about the Game of Life.

Stephen Hawkings The Meaning of Life (John Conway's Game of Life segment) Inventing Game of Life (John Conway) - Numberphile

The Guardian published a nice article about John Conway.


If you’ve been thinking “I’d like to sell my Tesla,” check out FindMyElectric.com—the ultimate Tesla marketplace, and one of Game of Life’s supporters!

The Game of Life is also supported by Dotcom-Tools, Load View Testing, Driven Coffee Roasters, and Web Hosting Buddy.

Implemented by Edwin Martin <>