Conway’s Game of Life

OO.. O... .OOO ...O

Life Lexicon

Eater1

Usually simply called an eater, and also called a fishhook.

Game of Life pattern ’eater1_(1)’

This eater can be constructed using a simple two-glider collision, as shown in stamp collection. It is often modified in various ways, or welded to other objects, to allow tighter packing of circuits or to allow a signal stream to pass close by. See clearance for an eater1 variant that is 1hd shorter to the southeast than the standard fishhook form. An eater1 can also be used as a 90-degree one-time turner.

Its ability to eat various objects was discovered by Bill Gosper in 1971. The fishhook eater can consume a glider, a LWSS, and a MWSS as shown below. It is not able to consume an HWSS, however. See honey bit or killer toads for that.

Game of Life Explanation

The Game of Life is not your typical computer game. It is a cellular automaton, and was invented by Cambridge mathematician John Conway.

This game became widely known when it was mentioned in an article published by Scientific American in 1970. It consists of a grid of cells which, based on a few mathematical rules, can live, die or multiply. Depending on the initial conditions, the cells form various patterns throughout the course of the game.

Rules

For a space that is populated:
Examples

Each cell with one or no neighbors dies, as if by solitude.

Each cell with four or more neighbors dies, as if by overpopulation.

Each cell with two or three neighbors survives.

For a space that is empty or unpopulated:

Each cell with three neighbors becomes populated.

More information

Video’s about the Game of Life

Stephen Hawkings The Meaning of Life (John Conway's Game of Life segment)
The rules are explained in Stephen Hawkings’ documentary The Meaning of Life
Inventing Game of Life (John Conway) - Numberphile
John Conway himself talks about the Game of Life

Interesting articles about John Conway

Products I Use and Love

These are services I personally use and trust every day. These links are affiliate links, which means I may earn a commission if you choose to make a purchase—at no extra cost to you. This helps support this site and allows me to continue improving it. Thank you for your support!

This site is made by Edwin Martin <>